

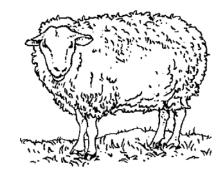


# CLUSTERING AND GENETIC ANALYSIS OF BODY RESERVES CHANGES THROUGHOUT PRODUCTIVE CYCLES IN MEAT SHEEP

#### **MACE Tiphaine**<sup>1</sup>,

Gonzalez-Garcia E.<sup>2</sup>,

Carriere F.<sup>3</sup>, Douls S.<sup>3</sup>, Foulquié D.<sup>3</sup>, Robert-Granié C.<sup>1</sup>,


Hazard D.<sup>1</sup>

<sup>1</sup>INRA UMR1388 GENPHYSE, 31326 Castanet-Tolosan, France <sup>2</sup> INRA UMR SELMET, 34060 Montpellier, France <sup>3</sup>INRA UE321 La Fage, 12250 Roquefort-sur-soulzon, France Paper n°45



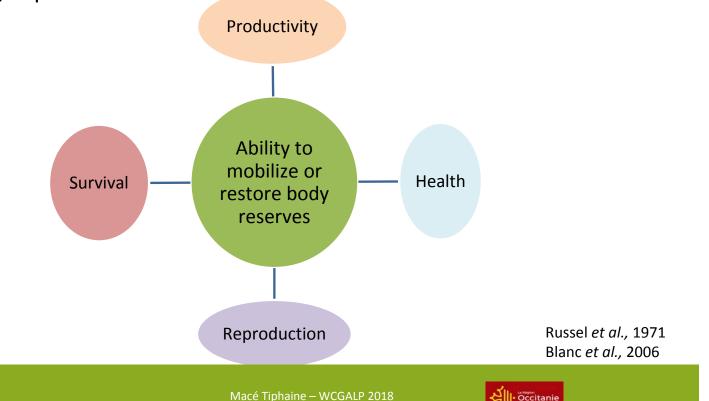
# Plan

- Context Robustness
- Cluster analysis
  - Materials and methods
  - ➤ Results
- Genetic analysis
  - Materials and methods
  - ➤ Results
- Discussion Conclusion
- Perspectives








- Robust animals to assure the farm sustainability in harsh conditions or in more controlled conditions (sheepfold)
- One component of robustness: mobilization/accretion of body reserves (BR) through lipids metabolism







- Robust animals to assure the farm sustainability in harsh conditions or in more controlled conditions (sheepfold)
- One component of robustness: mobilization/accretion of body reserves (BR) through lipids metabolism



- Body Condition Score use to characterize robustness
  - $\circ~$  Score from 1 to 5: lean to fat
  - $\circ~$  Optimum between 2.5 and 3.5  $\,$
- Heritability of BCS when considered as a punctual measurement
  o From 0.10 to 0.45 for ruminants
  - > No study in ruminants on genetic for BCS when considering variations along productive cycle (successive measurements)

Russel *et al.,*Borg *et al.,*Loker *et al.,*Shackell *et al.,*





#### Objectives

 To investigate temporal changes and profiles of BR dynamics throughout productive cycles

#### $\,\circ\,$ To analyze the genetic variability of BR dynamics in meat sheep

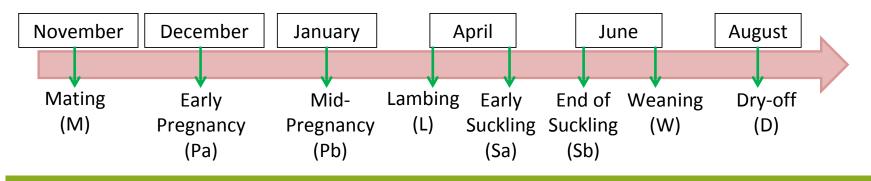




# Materials and Methods

Romane flock (n=250 ewes) reared exclusively outdoors in harsh conditions on a plateau (near Roquefort, La Fage)





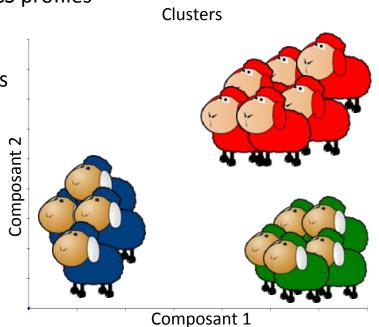





# Materials and Methods

- Romane flock (n=250 ewes) reared exclusively outdoors in harsh conditions on a plateau (near Roquefort, La Fage)
- BCS measured on 1146 ewes from 78 sires (2002-2015)
  - Cycle 1: 1146
  - $\circ\,$  Cycle 2: 1068
  - $\circ$  Cycle 3: 414
- > 8 BCS measurements per productive cycle

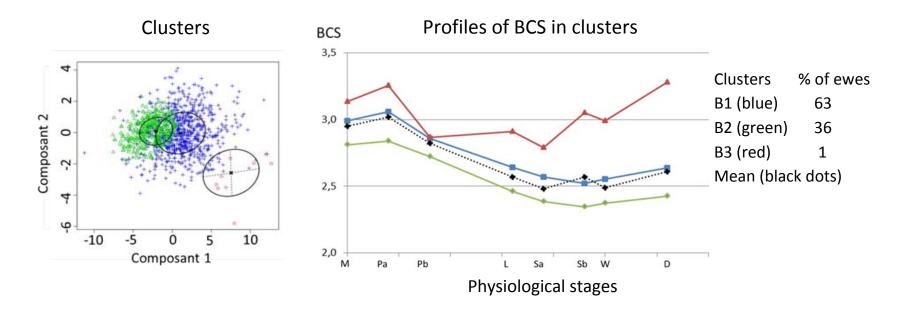







# Materials and Methods – Cluster analysis

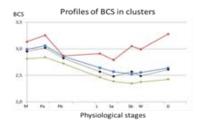
#### Clustering


- To investigate variability in individual BCS profiles
- o Smoothing (51 nodes)
- Functional Principal Component Analysis (FPCA)
- $\circ$  Clusters construction
  - Three first components of FPCA
  - Expectation-Maximization Algorithm
  - Repeatability and stability of clusters (n=2 to 7 clusters)








# Results - Clusters analysis Cycle 1



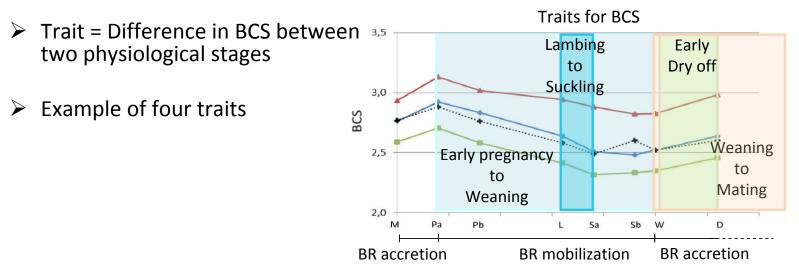
- Three clusters identified at cycle 1
- > Two main clusters with similar profiles but differing in level of BCS







### Results - Cluster analysis




- Three clusters identified at cycles 2 and 3
- Majority of clusters showed similar profiles along cycle but differed in BCS levels
- Biological effects





# Materials and Methods – Genetic Analysis

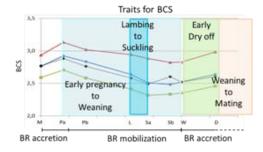


- Univariate and multivariate analysis: Heritabilities and correlations estimation with animal model (ASReml, all cycles considered)
  - Y = mu + animal + perm + age + parity + litter + year + e

Y: trait

mu: mean of the trait

animal: additive genetic effect of the ewe

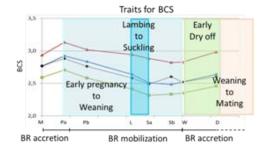

perm: environmental permanent effect of the ewe

age of the ewe, parity, litter, year of measurements as fixed effects

e: residual





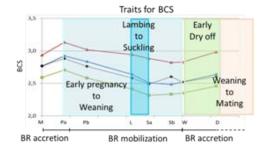



| Variables BCS                 | Early pregnancy<br>to Weaning | Lambing to<br>Suckling | Early dry-off      | Weaning to<br>Mating |
|-------------------------------|-------------------------------|------------------------|--------------------|----------------------|
| Early pregnancy<br>to Weaning | <b>0.14</b> (0.02)            |                        |                    |                      |
| Lambing to<br>Suckling        |                               | <b>0.07</b> (0.02)     |                    |                      |
| Early dry-off                 |                               |                        | <b>0.15</b> (0.02) |                      |
| Weaning to<br>Mating          |                               |                        |                    | <b>0.11</b> (0.04)   |

 $\blacktriangleright$  Low to medium heritabilities (0.07 ± 0.02 to 0.15 ± 0.02)





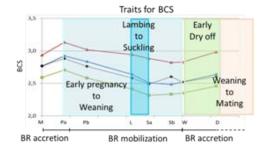



| Variables BCS                 | Early pregnancy<br>to Weaning | Lambing to<br>Suckling | Early dry-off      | Weaning to<br>Mating |
|-------------------------------|-------------------------------|------------------------|--------------------|----------------------|
| Early pregnancy<br>to Weaning | <b>0.14</b> (0.02)            | 0.49 (0.12)            |                    |                      |
| Lambing to<br>Suckling        |                               | <b>0.07</b> (0.02)     |                    |                      |
| Early dry-off                 |                               |                        | <b>0.15</b> (0.02) |                      |
| Weaning to<br>Mating          |                               |                        |                    | <b>0.11</b> (0.04)   |

> Positive correlation between periods characterizing BR mobilization








| Variables BCS                 | Early pregnancy<br>to Weaning | Lambing to<br>Suckling | Early dry-off      | Weaning to<br>Mating |
|-------------------------------|-------------------------------|------------------------|--------------------|----------------------|
| Early pregnancy<br>to Weaning | <b>0.14</b> (0.02)            | 0.49 (0.12)            |                    |                      |
| Lambing to<br>Suckling        |                               | <b>0.07</b> (0.02)     |                    |                      |
| Early dry-off                 |                               |                        | <b>0.15</b> (0.02) | 0.75 (0.10)          |
| Weaning to<br>Mating          |                               |                        |                    | <b>0.11</b> (0.04)   |

> Positive correlation between periods characterizing BR accretion







| Variables BCS                 | Early pregnancy<br>to Weaning | Lambing to<br>Suckling | Early dry-off        | Weaning to<br>Mating |
|-------------------------------|-------------------------------|------------------------|----------------------|----------------------|
| Early pregnancy<br>to Weaning | <b>0.14</b> (0.02)            | 0.49 (0.12)            | - <b>0.71</b> (0.08) | -0.73 (0.14)         |
| Lambing to<br>Suckling        |                               | <b>0.07</b> (0.02)     | - <b>0.46</b> (0.12) | -0.52 (0.18)         |
| Early dry-off                 |                               |                        | <b>0.15</b> (0.02)   | 0.75 (0.10)          |
| Weaning to<br>Mating          |                               |                        |                      | <b>0.11</b> (0.04)   |

Negative correlations between periods characterizing BR accretion and mobilization





## **Discussion - Conclusion**

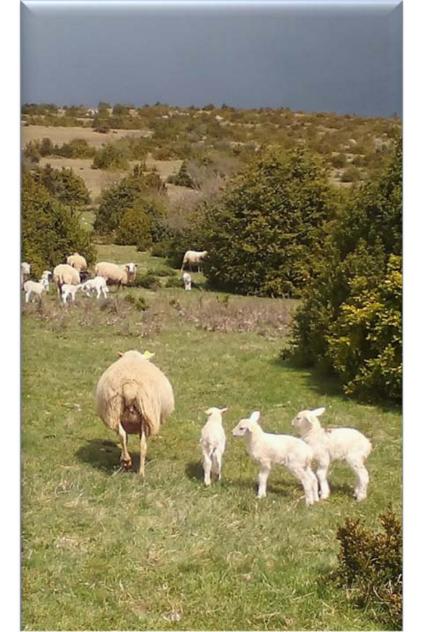
- Variability in BR dynamics
  - $\circ\,$  Three clusters at each cycle
  - Most of profiles with similar dynamic but differing in BR levels
  - Variation due to biological factors (litter size) AND individual differences
- > BCS variations heritable: possibility of using it for selection
- Accretion and mobilization processes of BR linked at the genetic level o Common genes?





## **Discussion - Conclusion**

#### Perspectives


- Link with zootechnical performances (lamb growth, ewe reproduction...)
- Longitudinal genetic modeling (Random Regression) of the BCS variations profiles
- o Joint analysis with climatic data (reaction norm model)
- Further phenotyping for BR variations (key metabolites /hormones /ultra sound measurements...)





#### Take home message

- > Variability in BR dynamics
- BCS variations heritable: possibility of selection
- Accretion and mobilization of BR linked at the genetic level



| Variables | h²          | C <sup>2</sup> | e²          | r           | $\sigma^{2}_{p}$ |
|-----------|-------------|----------------|-------------|-------------|------------------|
| BCS-M     | 0.35 (0.04) | 0.03 (0.03)    | 0.62 (0.02) | 0.38 (0.02) | 0.04 (0.00)      |
| BCS-Pa    | 0.37 (0.04) | 0.04 (0.03)    | 0.60 (0.02) | 0.40 (0.02) | 0.05 (0.00)      |
| BCS-Pb    | 0.32 (0.03) | 0.04 (0.03)    | 0.64 (0.02) | 0.36 (0.02) | 0.05 (0.00)      |
| BCS-L     | 0.26 (0.04) | 0.10 (0.03)    | 0.64 (0.02) | 0.36 0.02)  | 0.04 (0.00)      |
| BCS-Sa    | 0.27 (0.03) | 0.04 (0.03)    | 0.69 (0.02) | 0.31 (0.02) | 0.04 (0.00)      |
| BCS-Sb    | 0.26 (0.05) | 0.05 (0.05)    | 0.69 (0.04) | 0.31 (0.04) | 0.05 (0.00)      |
| BCS-W     | 0.33 (0.04) | 0.05 (0.03)    | 0.61 (0.02) | 0.39 (0.02) | 0.05 (0.00)      |
| BCS-D     | 0.33 (0.04) | 0.06 (0.03)    | 0.61 (0.02) | 0.39 (0.02) | 0.04 (0.00)      |

#### Estimates (± standard errors) of variance components for BCS.

h<sup>2</sup>: heritability; c<sup>2</sup>: proportion of total phenotypic variance due to ewe permanent environmental effect; e<sup>2</sup>: proportion of total phenotypic variance due to temporary environmental effects; r: repeatability;  $\sigma_p^2$ : total phenotypic variance.





#### Estimates (± standard errors) of variance components for BCS variations.

| Variables | h²          | C <sup>2</sup> | e²          | r           | $\sigma_{p}^{2}$ |
|-----------|-------------|----------------|-------------|-------------|------------------|
| BCS-M:Pa  | 0.07 (0.02) | 0.00 (0.02)    | 0.92 (0.02) | 0.08 (0.02) | 0.041 (0.001)    |
| BCS-Pa:W  | 0.16 (0.03) | 0.02 (0.03)    | 0.83 (0.02) | 0.17 (0.02) | 0.056 (0.002)    |
| BCS-Pa:L  | 0.10 (0.02) | 0.02 (0.02)    | 0.88 (0.02) | 0.12 (0.02) | 0.055 (0.001)    |
| BCS-L:Sa  | 0.04 (0.02) | 0.04 (0.02)    | 0.92 (0.02) | 0.08 (0.02) | 0.030 (0.001)    |
| BCS-W:D   | 0.10 (0.03) | 0.01 (0.03)    | 0.89 (0.03) | 0.11 (0.03) | 0.032 (0.001)    |
| BCS-W:M   | 0.10 (0.04) | 0.01 (0.05)    | 0.89 (0.05) | 0.11 (0.05) | 0.039 (0.002)    |

h<sup>2</sup>: heritability; c<sup>2</sup>: proportion of total phenotypic variance due to ewe permanent environmental effect; e<sup>2</sup>: proportion of total phenotypic variance due to temporary environmental effects; r: repeatability;  $\sigma_p^2$ : total phenotypic variance.





CV BCS-Pa:W 22% BCS-L:Sa 32% BCS-W:D 52% BCS-W:M 25%



